conserve water (27)

13 Feb 2018

Improving Irrigation Efficiency Reduces Water Use

Ristvey, A., Oki, L.R., Haver, D.L., and B.J.L. Pitton (University of California Davis)

A high level of irrigation application uniformity is essential to maximize irrigation efficiency and several strategies are available to audit irrigation systems. Limitations in system design and uniformity can decrease water availability and distribution, thereby hindering efforts to provide sufficient water to plants. Inadequate plant water can reduce growth and quality, decreasing saleable product and profits, while potentially creating environmental problems. Discussed in this article are irrigation system best management practices (BMPs) to improve water use efficiency (WUE), with the potential to increase the amount of water available for distribution and decrease waste.

See the link bellow

http://www.amerinursery-digital.com/November2017#&pageSet=10

30 Jan 2018

Irrigation Solutions

Majsztrik, J., White, S.A. (Clemson University), and J.S. Owen, Jr. (Virginia Tech University)

Is my water clean enough or will it harm my plants? The question is simple, the answer is not. One of the most common methods of water treatment is physical screening. Typical physical filters include sand, mesh screen, disc, glass, or other substrates that serve as barriers to particulates. During physical screening, the materials in the filter serve as a barrier to stop particles (sediment) from moving through the filter.  Learn more about these filters, and how to keep your plants safe from disease and chemicals that may be spread through recycled irrigation water.

See the link bellow

http://magazine.nurserymag.com/article/august-2017/irrigation-solutions.aspx

16 Jan 2018

Water Quality Quest

Majsztrik, J. and Sarah A. White (Clemson University)

Is my water clean enough or will it harm my plants? The question is simple the answer is not. Activated carbon and membrane filters are tools worth considering if you recycle water or have problems with water quality. If you recycle water, routinely spray PGRs, or non-target crops at your operation are stunted or deformed, you may have residual chemicals in your recycled water that could be reducing plant quality and thus hurting your bottom line. Learn more about these filters, and how to keep your plants safe from disease and chemicals that may be spread through recycled irrigation water.

See the link bellow

http://magazine.nurserymag.com/article/september-2017/water-quality-quest.aspx

  •   1  
  •   2  
  •   3  
  •   4  
  •   5  
  •   6  
  •   7  
  •   8  
  •   9  

Description of research activities

A national team of scientists is working to encourage use of alternative water resources by the nation’s billion-dollar nursery and floriculture industry has been awarded funds for the first year of an $8.7 million, five year US Department of Agriculture – National Institute of Food and Agriculture –Specialty Crop Research Initiative competitive grant.

The team will develop and apply systems-based solutions to assist grower decision making by providing science-based information to increase use of recycled water.  This award from the NIFA’s Specialty Crop Research Initiative is managed by Project Director Sarah White of Clemson University.  She leads a group of 21 scientists from nine U.S. institutions.

Entitled “Clean WateR3 - Reduce, Remediate, Recycle – Enhancing Alternative Water Resources Availability and Use to Increase Profitability in Specialty Crops”, the Clean WateR3 team will assist the grower decision-making process by providing science-based information on nutrient, pathogen, and pesticide fate in recycled water both before and after treatment, average cost and return-on investment of technologies examined, and model-derived, site specific recommendations for water management.  The trans-disciplinary Clean WateR3 team will develop these systems-based solutions by integrating sociological, economic, modeling, and biological data into a user-friendly decision-support system intended to inform and direct our stakeholders’ water management decision-making process.

The Clean WateR3 grant team is working with a stakeholder group of greenhouse and nursery growers throughout the United States.

For example, at the University of Florida graduate student George Grant is collecting data on removal of paclobutrazol, a highly persistent plant growth regulator chemical, from recirculated water using granular activated carbon (GAC) filters. This is being done in both research greenhouses and in a commercial site. The GAC filters can remove more than 90% of chemical residues, and are proving to be a cost-effective treatment method.

 

×